

Adaptive Assignment for
Real-Time Raytracing
Paul Aluri [paluri] and Jacob Slone [jslone]

Carnegie Mellon University
15-418/618 Spring 2015

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

Summary
We implemented a CUDA raytracer accelerated by a non-recursive bounding interval
hierarchy (BIH) and experimented with different methods of adaptive assignment of rays
to CUDA thread blocks to minimize SIMD divergence.

Background
Our project involved two major aspects to achieving a real-time raytracer capable of
almost instantly producing high-fidelity renders from scenes with thousands of vertices.

The first component was building a data structure that would allow for amortized
logarithmic search time when computing intersections. We implemented this data
structure for both the objects and faces in our scenes. This optimization significantly
increased the framerate of our renderer, especially in scenes with higher numbers of
vertices/faces (since the penalty of linear rather than logarithmic lookups grows with the
number of vertices/faces).

The second component was experimenting with methods for reassigning rays in CUDA
thread blocks in order to minimize the amount of SIMD divergence caused by rays
bouncing off objects differently. The amount of computation that our raytracer performs
is directly related to the maximum number of bounces we allow our rays to take (which is
directly related to how visually realistic the rendered scenes are). Because we were
aiming for higher quality renders, we allowed our rays to bounce up to 5 times. A
consequence of this is that even nearby rays can vary drastically in what they reflect off
and also in how many times they reflect. Raytracers are very data-parallel, with locality in
thread blocks due to the fact that similar mesh/face data will be accessed by threads in
the same thread block. However, given the possibility for highly divergent rays existing in
a block, SIMD vector utilization can be poor and potential performance benefits can be
lost.

To counteract this, we came up with a couple of strategies for assigning rays. Neither
proved to be groundbreaking. The first strategy was to count the number of bounces
each ray made, sort all rays by the number of bounces, and reassign them to thread
blocks in that order, so that rays with similar number of bounces would be assigned
together. The second strategy was more complicated. We came up with a heuristic
which attempted to model the intersection lookups in our BIH by creating a bit vector
that represented the path that the ray followed down the BIH tree. Similar to the first
strategy, we then sorted the rays by their path vector, hoping that rays with similar paths
would be blocked together. This second strategy performed much poorer than the case
of not reassigning rays at all (by default thread blocks are assigned 2D chunks of
contiguous pixels). The first, simpler strategy proved to be slightly better than the default
assignment method, although not significantly.

2

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

Approach

Code
This project required the use of software libraries and code bases.

1. 3D Asset Importing - Assimp Open Asset Import Library
(http://assimp.sourceforge.net)

2. OpenGL Rendering - FreeGlut and GLEW
3. Pieces of raytracer code - Jacob’s raytracer

We decided to use NVIDIA GPUs and Cuda to accomplish our goals. We targeted
mid-range gaming GPUs, although performance could easily be tailored to various GPUs
by scaling the quality of the raytracer up/down (e.g., change the max number of bounces
that rays can take).

Data Structures
We calculated the bounding interval hierarchy data structure on the CPU and then copied
it over to the GPU, where it was accessed by rays in order to alleviate the amount of
computation they had to perform when determining their intersections.

For the mesh, face, and vertex data, we loaded in the scene data using the Assimp library,
reformulated it to meet our needs, and sent it to the GPU.

The literature was conflicted on the best heuristic to use for splitting in the BIH, and given
more time we would have liked to test different heuristics (e.g., surface area), but we
decided to use the standard heuristic of splitting in the middle of the longest axis of the
current bounding box.

A major feat of our BIH intersection implementation was the ability to completely avoid
recursion. This gave us substantially higher vector utilization than the naive
implementation while traversing the tree, limiting the divergence to intersection tests on
the leaves of our tree.

We were also able to leverage C++ templating to keep the BIH for our scene in the
device's constant memory, allowing for substantially faster reads when traversing the
scene.

3

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

Mapping
Rays were mapped to Cuda threads. Each ray has a pixel position, and simulates the
path that light travels from a light source to the 3D point located at the ray’s 2D pixel
position.

Iteration/Optimizations
It took us many more hours than we would have liked to get a functional raytracer
working. Although we began with code libraries for importing assets,pieces of raytracer
code, and OpenGL rendering, it took a while to find some tricky bugs in our code and get
a scene rendering, but it was definitely extremely satisfying once we got a scene
rendering to incrementally make visual improvements on the raytracer. The first part of
our iteration involved just that—implementing and improving features of our raytracer to
provide aesthetically appealing, realistic renders.

Once we were satisfied with the visual aspect of our raytracer, we moved onto the next
portion of our iteration, implementing the bounding interval hierarchy for our objects
and faces. Once we got this data structure working, we saw immediate and drastic
speedups for our renders, particularly scenes with high face-count meshes.

Finally, we began iterating with different heuristics for reassigning rays to Cuda thread
blocks. We tried both the ray bounce and BIH bit path optimizations. In each of these
methods, for each ray we kept track of the heuristic, sorted the rays by the heuristic
value (using thrust) and then reassigned rays to blocks in this new order.

Results

Test Scenes
These test scenes were chosen because of their increasing complexity in terms of
number of vertices as well as their affinity for rays bouncing several times on several
different objects.

Hardware
We used an NVIDIA 760 GTX GPU to gather our data.

4

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

1. Base - Vertex Count: 60

2. Cube - Vertex Count: 68

5

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

3. Monkey - Vertex Count: 567

4. 1 Sphere - Vertex Count: 2046

6

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

5. 2 Spheres - Vertex Count: 4032

6. 3 Spheres - Vertex Count: 6018

7

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

7. 4 Spheres - Vertex Count: 8004

8. 5 Spheres - Vertex Count: 9900

8

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

Methodology
For our metric, we chose to measure the amount of seconds it took for each scene to
render 200 frames. This can easily be converted to an average framerate over 200
frames, but we decided that using the time metric would be more easily understandable.

For each of the eight test scenes, we measured the time on seven different setups:

Test Case BIH Reassignment
1 yes no

2 yes bit path

3 yes bounce count

4 no bit path

5 faces bit path

6 objects bit path

7 yes bit path

Findings

This above chart is not necessarily surprising, but it was definitely encouraging to see
such a significant performance increase when reducing the complexity of our
intersections from O(n) to O(log n) time. Although the overhead of the data structure
caused slowdowns with (unrealistically) low vertex-count scenes, it became exceedingly
more efficient with higher numbers of vertices.

9

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

As part of our testing, we tried setting the max depth for our BIH to different depths
(depth 1 being essentially equivalent to a linear lookup). Testing in this manner led to the
conclusion that for our test cases max depth 6 was optimal, although this number should
grow logarithmically with the number of vertices in order to achieve optimal results.

The above graph shows the different effects of three different assignment methods, the
standard, bit path, and bounce count methods. The bit path resulted in noticeable
slowdown from the default case. This is likely due to poor memory utilization, rather
than divergence, but much more sophisticated testing would be necessary to conclude
this. The bounce count heuristic actually proved to be slightly faster than the standard
assignment, as seen more clearly in the bar graph below.

10

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

The speedup is not significant, but it does exist. And this fact alone provides
encouragement for performing further research for the bounce count method as well as
hope that reassigning rays in an adaptive manner is not only theoretically optimal, but
also realistically achievable with current systems. We speculate that perhaps one clear
approach to making the heuristic more system-friendly would be to optimize how
memory is accessed, because given our setup, lots of memory locality is lost. We also
speculate that it might be inherently difficult to achieve significant speedups due to
adaptive assignment of rays because it is possible that the assumption that close pixels
have similar rays is already a decent heuristic for assigning rays, making the standard
assignment of pixel chunks to thread blocks a reasonable approach to combatting ray
divergence.

11

Paul Aluri [paluri]
Jacob Slone [jslone]
11 May 2015

References

Kinkelin, Martin. 'GPU Volume Raycasting Using Bounding Interval Hierarchies'.

Masterpraktikum aus Computergraphik und Digitaler Bildverarbeitung (2009).

Mukundan, R. Advanced Methods In Computer Graphics. London: Springer, 2012.

Pharr, Matt, and Greg Humphreys. Physically Based Rendering. San Francisco, Calif.:

Morgan Kaufmann, 2010.

Wachter, Carsten, and Alexander Keller. 'Terminating Spatial Hierarchies By A Priori

Bounding Memory'. 2007 IEEE Symposium on Interactive Ray Tracing (2007): 10
May 2015.

Wald, I. 'Fast Construction Of SAH Bvhs On The Intel Many Integrated Core (MIC)

Architecture'. IEEE Transactions on Visualization and Computer Graphics 18.1
(2012): 47-57. 10 May 2015.

List of Work by Each Student

Equal work was performed by both students.

12

